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Abstract

Cyanobacteria are ancient life forms and have adapted to a variety of extreme environments,
including high salinity. Biochemical, physiological and genetic studies have contributed to
uncovering their underlying survival mechanisms, and as recent studies demonstrate, proteomics
has the potential to increase our overall understanding further. To date, most salt-related
cyanobacterial proteomic studies have utilised gel electrophoresis with the model organism
Synechocystis sp. PCC6803. Moreover, focus has been on 2—4% w/v NaCl concentrations within
different cellular compartments. Under these conditions, Synechocystis sp. PCC6803 was found to
respond and adapt to salt stress through synthesis of general and specific stress proteins, altering
the protein composition of extracellular layers, and re-directing control of complex central
intermediary pathways. Post-transcriptional control was also predicted through non-correlating
transcript level data and identification of protein isoforms.

In this paper, we also review technical developments with emphasis on improving the quality and
quantity of proteomic data and overcoming the detrimental effects of salt on sample preparation
and analysis. Developments in gel-free methods include protein and peptide fractionation
workflows, which can increase coverage of the proteome (20% in Synechocystis sp. PCC6803).
Quantitative techniques have also improved in accuracy, resulting in confidence in quantitation
approaching or even surpassing that seen in transcriptomic techniques (better than [.5-fold in
differential expression). Furthermore, in vivo metabolic labelling and de novo protein sequencing
software have improved the ability to apply proteomics to unsequenced environmental isolates.
The example used in this review is a cyanobacterium isolated from a Saharan salt lake.

Review

1.0 Introduction

Increasing salinity, believed to affect nearly one-fifth of
the world's irrigated land, is a major factor impairing
worldwide agricultural productivity [1,2]. Furthermore,
the problem is predicted to get considerably worse over
the next 30 to 50 years [3]. Despite the importance of this
problem, compounding effects of salinity and associated

environmental stresses are not fully understood, particu-
larly at the molecular level.

Cyanobacteria, formerly referred to as blue-green algae,
are oxygenic phototrophic bacteria [4] which possess an
internal membrane system, the photosynthetic thylakoid
membrane. They are a multifarious group of organisms
known to have colonised a wide range of ecosystems
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including soil, air, dry rock and aquatic systems [5]. Many
species are capable of not only surviving, but thriving in
conditions previously thought to be inhabitable, tolerat-
ing desiccation, high temperatures, extreme pH and high
salinity, illustrating their capacity to acclimate to extreme
environments [6]. Cyanobacteria have been classified into
three groups relating to their salt tolerance, salt sensitive
(or stenohaline), moderately halotolerant, and extremely
halotolerant [7]. Example genera for each group include
Anabaena, Synechocystis and Aphanothece, respectively.

Understanding how cyanobacteria acclimate to saline
environments has been a source of interest, fuelled by two
main drivers, agriculture and biotechnology. Firstly, com-
parable to higher plants, cyanobacteria perform oxygen
evolving photosynthesis, and therefore they share many
functional pathways. It is relatively easy to culture many
cyanobacterial species and additional advantages such as
rapid growth rate and low culture costs make them ideal
models for investigating metabolic processes such as pho-
tosynthesis and respiration. Cyanobacteria therefore
make suitable models for studying the physiology of salt
tolerance and this has provided valuable insights into
revealing the nature in which salinity prevents crop plant
species from using aquatic resources [3,8].

From a non-agricultural perspective, some of the osmotic
compounds produced in response to high salt have the
potential to play important roles in biotechnology and
medicine. Osmotic compounds (also known as compati-
ble solutes) are low-molecular mass, uncharged,
hydrophilic molecules that do not interfere with cell
metabolism. These compatible solutes help restore
osmotic balance with surroundings and maintain mem-
brane integrity and protein stability [9,10]. Cyanobacteria
are able to synthesise their own compatible solutes, as
well as uptake them from the surroundings. They help sta-
bilise and even enhance protein activity, for example, pol-
yethyl glycols improving crystallization of proteins [11].
In medicine, trimethylamine N-oxide has the capability of
in vitro rescue of cystic fibrosis (misfolded) proteins [12].
They are also used to protect cells from stress in the cos-
metics industry, for example, ectoine has been shown to
protect skin from UVA-induced damage [13,14].

Biochemical, physiological and genetic studies have
revealed how cyanobacteria are able to adapt to high salt
environments, initially by active ion export followed by
accumulation of compatible solutes [5,15,16]. However,
the discovery of salt-regulated genes in cyanobacteria has
been accelerated by recent progress in functional and
structural genomics. The genomes of over 28 cyanobacte-
ria are now fully sequenced (with at least 72 in progress)
according to the Genomes On-Line Database [17] allow-
ing more directed analysis on an individual gene scale as
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well as on a genome scale. The majority of these more glo-
bal functional studies have been conducted on the model
cyanobacterium Synechocystis sp. PCC6803 (henceforth
referred to as Synechocystis). This unicellular and freshwa-
ter cyanobacterium has a fully sequenced and annotated
genome [18]. It is also able to grow photoheterotrophi-
cally and is naturally transformable, all characteristics
which enhance its suitability for combined systems level
genetic, proteomic and metabolomic (metabolic flux)
studies [18-20].

Salt studies in cyanobacteria have generated a large
amount of information and are generally centred on four
main thematic areas-

(1) Biochemical and physiology based studies [21-30].
(2) Salt intake and cell signalling [31,32].

(3) Gene level responses- salt regulated genes [33,34],
microarrays [35,36] and mutational analysis of salt toler-
ance determinants [37].

(4) Post-genomics [38-41].

This work has increased our understanding of the strate-
gies cyanobacteria implement to adapt to high salinity,
and a schematic overview is given in a review by Joset et al.
[5]. The immediate, or shock, responses include the accu-
mulation of compatible solutes and active export of inor-
ganic ions, with these being regarded as largely protein
synthesis independent [5]. However, in order to survive in
high salt for extended periods of time, cells must adapt to
the new conditions. Adaptation is a long-term process,
and is therefore protein synthesis dependant. It is there-
fore imperative to study how proteins play functional
roles in salt adaptation strategies, and this review will
emphasise work specifically carried out in the proteomics
field.

The proteome of an organism refers to the total set of pro-
teins encoded by its genome (protein coding genes) [42],
and therefore the field of proteomics encompasses study-
ing these proteins, specifically the change in abundance
(and status of post-translational modifications (PTM's))
in cells, tissues and organelles in response to changing
environmental factors. Unlike previous protein based
studies, proteomics involves the global examination of
proteins. This field has the capability to reveal informa-
tion on the level of protein expression, protein isoforms
produced from each gene, the extent to which proteins are
post-translationally modified and also the cellular and
sub-cellular distribution of proteins.
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In the 1990's, during the advent of genetic sequencing and
bioinformatics, the ability to identify proteins increased
through the use of mass spectrometry (MS). Now the tech-
nique is coupled to cross examination of databases, and
has become an intrinsic part of proteomics research. With
higher sensitivity and throughput, the number of proteins
identified per experiment has increased. Proteins can be
identified by peptide mass fingerprinting (PMF) or tan-
dem MS, and together with the technical development of
analysis software, the identification of proteins has
become rapid and more accurate [43]. This provides a val-
uable tool for investigating protein profile changes in
response to environmental stimuli, such as high salt. Fur-
thermore, it has been demonstrated that expression pat-
terns between mRNA and proteins levels may not
correlate, and that protein levels are dependant on trans-
lational controls and regulated degradation, as well as the
abundance of corresponding messages (mRNA) [44,45].
These studies indicate gaps in our knowledge of how tran-
scription, translation and post-translational modifica-
tions interact and ultimately effect protein abundance and
function. By mapping which proteins interact together
and which proteins play pivotal roles in certain condi-
tions, a further understanding of survival traits, including
modifications of specific cellular pathways, can be
achieved. However, the task is not simple, and studies
using nuclear magnetic resonance imaging have shown
that proteins are more active and dynamic than initially
predicted, adding complexity to understanding where
each protein is located in a cell, when the protein is
present and for how long, and with which other proteins
it is interacting [46].

In this review, a general overview of current proteomic
methodologies will be discussed, emphasising the aspect
of using and analysing samples with potentially detrimen-
tal amounts of salt. Use of these technologies with the
well studied model system Synechocystis, with associated
findings will also be considered, highlighting current
challenges. With the rapid advances in proteomic tech-
niques, some of these goals will be addressed, with refer-
ence to more challenging systems.

2.0 Current proteomics methodologies

2.1 General overview

A proteomics experiment involves collaboration of several
techniques, commencing with protein extraction and end-
ing with accurate and reliable identification and quantita-
tion. A typical proteomic workflow is presented in Figure
1.

Cyanobacterial proteomes (in common with most pro-
teomes) are very complex, and in some cases consist of
several thousand proteins [18,47]. Due to this complexity,
two-dimensional polyacrylamide gel electrophoresis
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kit, IEF- isoelectric focusing, HPLC- High Performance Liquid Chromatog-
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(2DE) has been widely utilised as the standard protein
separation technique. Highly sensitive 2DE was devel-
oped in 1975, and the technique enabled fractionation of
a complex mixture of proteins based on their isoelectric
point (pI) and molecular weight [48,49]. The method has
been shown to have very impressive resolving power [50],
and allows for a quantitative comparison of protein
changes in multiple samples by using a variety of staining
techniques. Another major advantage of 2DE is the ability
to detect protein isoforms, for example, PTM's such as
phosphorylation [51,52]. However, 2DE has been criti-
cised for a lack of automation and is often considered to
be a laborious process. In addition, the success of the
method is dependant on optimisation [53]. The ability to
improve results by varying conditions and techniques,
allows at least a satisfactory global overview of a pro-
teome.

Recent advances in 2DE include the introduction of nar-
row range immobilised pH gradient (IPG) strips, which
have significantly improved protein coverage [54]. IPG
strips are prepared by co-polymerising acrylamide mono-
mers with acrylamide derivatives which contain carboxy-
lic and tertiary amino groups. The buffering groups form
a fixed pH in the strip [55]. Automated spot excision sys-
tems and mass in-gel trypsin digestion techniques have
also reduced the arduous nature of preparing samples
from 2DE gels for MS analysis [56,57], and software pack-
ages such as Samespots and Progenesis (Nonlinear
Dynamics, Newcastle, U.K.) have enhanced gel analysis
capabilities. These and additional methods are extensively
reviewed elsewhere [58-61]. In addition to advances in
protein identification and throughput efficiency of 2DE,
quantitation methodology has also improved. Fluores-
cent and radioactive stains can be used prior to protein
separation, as well as highly sensitive post-separation
stains such as SYPRO ruby, coomassie and silver stains
[62-64].

Protein mixtures can now be multiplexed and run on the
same gel in a technique called differential in gel electro-
phoresis (DIGE) [65]. Through the use of multiple fluo-
rescent dyes to label protein samples prior to 2DE, DIGE
allows for multiple samples to be co-separated and visual-
ized on one single gel. By using CyDyes (GE Healthcare,
Buckinghamshire, U.K.) not only is the sensitivity and
reproducibility enhanced, but also an internal standard is
included increasing statistical confidence. Unlu et al. [65]
initially reviewed this method comparing two Drosophila
embryo extracts. DIGE was found to be reproducible and
sensitive, detecting differential abundance of proteins at
nanogram levels.

Quantitation can also be improved by using in vivo iso-
tope labelling of proteins prior to 2DE separation. This
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method is particularly attractive because the isotope label
is incorporated into the organisms' proteome, with no
physiochemical or biological consequences. Potentially
all proteins are labelled, and this technique is very appli-
cable and compatible with accompanying techniques. The
different peptide isotopes can be resolved by MS, and this
is where quantitation occurs (based on peptide peak
areas), in contrast to staining intensity analysis, which is
only semi-quantitative, and requires many replicate gels
for statistical relevance. Methods include stable isotope
labelling with amino acids in cell culture (SILAC) [66]
and elemental labelling [67]. In the SILAC method, cell
lines are cultured in media lacking an essential amino
acid, supplemented with an isotopically labelled form of
that amino acid, for example, deuterated leucine. This
process allows quantitation of potentially all leucine con-
taining peptides [66]. For a more universal labelling
method where all peptides can be labelled, elemental
labelling with media containing >N or 13C isotopes can
be performed [67]. As demonstrated by Snijders et al. [68],
combining metabolic labelling with gel electrophoresis
means a further step is added to the traditional method.
However, this produces a faster workflow to identify dif-
ferentially expressed proteins, as the staining intensity is
used as an initial pre-screen for differentially stained pro-
tein spots, and only these are selected for identification
and accurate MS-based quantitation [68]. Two gels are run
in parallel with each containing proteins sourced from
two phenotypes, with one isotopically labelled reference
phenotype (the reference phenotype is the same in both
gels). A comparison of staining intensity can then high-
light potentially differentially expressed proteins. In con-
trast to a traditional 2DE workflow, each spot potentially
represents proteins from two phenotypes. Corresponding
protein spots from both gels are excised and trypsin
digested, and upon resolving peptides by MS, relative ion
intensity from both phenotypes can be used for accurate
quantitation. Another advantage of this method is that
two phenotypes can be combined in one gel (labelled and
un-labelled) reducing technical variation [68].

In recent years, developments have been made to replace
gel-based fractionation to overcome their limitations.
Complex protein mixtures can be separated based on
physical and chemical properties, including size and
hydrophobicity [69,70]. It is also possible to digest pro-
teins into peptides and separate on peptide properties
[71-73]. Quantitation using non-gel-based (shotgun)
methods has progressed rapidly, and usually involves
comparison against an included standard. Quantitation
can either be relative or absolute, and example methods
are discussed further in section 4.

The common link in all the techniques discussed above is

the mass spectrometer. It plays an important role in pro-
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tein identification and can also be implemented for quan-
titation. Principally the mass spectrometer measures the
mass-to-charge ratio of analytes (peptides). Analytes
measured in the gas phase are ionised most popularly by
electrospray ionisation (ESI) or matrix-assisted laser-des-
orption ionization time of flight mass spectrometry
(MALDI-TOF MS) [74,75]. MALDI-MS is usually coupled
to time-of-flight (TOF) analysers and therefore intact pep-
tide masses are measured, and these are subsequently
matched to theoretical masses in a database to provide
protein identification (known as PMF). ESI is mostly cou-
pled to ion traps, triple quadrupole or quadrupole-TOF
instruments, which fragment selected precursor ions
(peptides) further and generate ion spectra. Utilising an
array of different algorithms, this information is matched
against protein sequence databases to provide protein
identifications and information on peptide sequence is
also provided. Aebersold et al. [76] presents a general
insight into mass-spectrometry-based proteomics. Deal-
ing with the extensive amount of data generated from
these global scale studies is a challenge, and the role of
bioinformatics in proteomics is fundamental. A review of
bioinformatics in proteomics with particular reference to
the development of novel algorithms and discussion of
the integration of bioinformatic resources can be found in
Blueggel et al. [77] and Huang et al. [78].

2.2 Working with 'Salty' samples

Salt poses a serious problem for resolving proteins by
2DE, but particularly in the first dimension where high
voltage is required to focus proteins by isoelectric point.
Removing salt is therefore imperative to allow sufficient
focusing, minimise sample loss and avoid poor resolution
due to streaking on gels. Salt removal can be performed
during several stages of the general proteomic work-flow
as summarised in Figure 1.

2.2.1 Salt removal before protein extraction

Cell harvesting requires centrifugation where the superna-
tant (media) is removed, leaving a cell pellet. To remove
external salts, several further wash steps are easily per-
formed by resuspending the pellet in a non-saline solu-
tion, for example growth media with no added salts, and
repeating the centrifugation. In halophiles, cells lyse when
the environmental salt concentration drops below ca.
10-15%. Therefore salt cannot be removed with a wash
step here and instead suspension of cells in a low-salt
solution can be used directly for protein extraction by
inducing osmotic shock. However, after protein recovery
from the supernatant by high speed centrifugation
(250,000 x g), a wash step can be incorporated to remove
excess salt.

http://www.salinesystems.org/content/4/1/1

2.2.2 Salt removal dfter protein extraction

At the Korea University, Seoul, the use of 3 kDa molecular
weight (M,) cut-off columns was successfully utilised to
remove excess salts from proteins [79]. These filtration
columns contain pores in which only small molecules, for
example, water and salt can enter, excluding proteins. The
nature in which the desalted protein sample is collected
(i.e. to avoid any protein loss) means that extra elution
buffer is present but this dilution of the protein sample is
relatively small. Another method that has gained popular-
ity is dialysis using microdialysis tubes and centrifugation.
The result is a marked improvement in protein resolving
power but the time added to the overall method can be
two and twelve hours, a definite disadvantage as some
proteases may still be active during this period [53]. This
process requires a lot of solution, whereas small volumes
of protein solution are more commonly used in pro-
teomic methodologies. Another disadvantage is that some
proteins can precipitate after dialysis [80].

Ultrafiltration is not a widely used technique, but has
been successfully implemented to remove salt [81]. The
ultrafiltration device is fitted with a filter membrane
which usually allows molecules smaller than 5 kDa to
pass through, but retain larger molecules in the cell such
as proteins, when high pressure is applied. This method
has the benefit of not increasing the sample volume.

Precipitation methods have been included in the pro-
teomics process for several reasons, mostly to concentrate
highly dilute samples, inhibit protease activity and again
to remove disruptive material such as salt. Recently, Smith
et al. [80] compared several precipitation methods using
trichloroacetic acid (TCA), acetone, chloroform/metha-
nol, ammonium sulphate as well as ultrafiltration. The
most promising results were observed using TCA and
ultrafiltration due to the advantageous desalting effects.
The TCA process is very easily applied, consisting of two
main steps, incubation at -20°C with TCA/acetone, and
removal by washing with TCA and centrifugation [82].
However, it was reported that TCA precipitation results in
integral membrane proteins loss, highlighting the need
for alternative methods when resolving membrane pro-
teins by electrophoresis [83]. Finally, precipitation with
ammonium sulphate was shown to be useful when
attempting to eliminate high abundance proteins [80].

2.2.3 Salt removal during fractionation

It is possible to adjust parameters or commonly used
methods so as to eliminate interfering salt. Increasingly
popular is the incorporation of a desalting step in the first
dimension of a 2DE experiment, isoelectric focusing (IEF)
[84]. By including an initial low-voltage step, the highly
charged salt in the sample can migrate to the electrode,
allowing the lesser charged proteins to migrate without
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interference. However, this may not be solely sufficient
when working with hypersaline conditions, for example
>6% w/v NaCl, and can add up to nine hours to the first
dimension step. Cup-loading during IEF allows a concen-
tration maximum of 50 mM salt, higher than passive rehy-
dration of IPG strips [85]. In cup-loading, the protein
sample is applied onto a small area of the strip during the
focusing program, using a plastic cup, whereas in passive
rehydration the sample and rehydration buffer are added
directly to the entire strip and allowed to absorb for up to
12 hours. For passively rehydrated IPG strips, it has been
shown that a simple regime of three, ten minute washes
prior to focusing improves the quality of second dimen-
sion separation [86].

2.2.4 Online salt removal with instrumentation

More sophisticated methods of desalting have also been
developed to remove small quantities of salt prior to MS.
Particularly useful for high-throughput laboratories deal-
ing with a large number of salt samples, is the coupling of
a desalting chip with ESI-MS. Proteins are adsorbed on a
hydrophobic poly(vinylidene difluoride) membrane,
which allows the washing out of salts [87]. Furthermore,
microspin columns with modified C18 membranes have
been shown to be particularly rapid at salt removal [88].

Desorption electrospray ionisation (DESI) with MS anal-
ysis has been shown to tolerate higher levels of salt. Salt is
particularly problematic when using ESI, and leads to ion
suppression [89]. Non-volatile materials like salts alter the
efficiency of droplet formation, which in turn negatively
affects the number of ions reaching the mass spectrome-
ter. Adding ammonium acetate to the buffer in ESI is
known to reduce ion suppression effects in ESI, but the
ability to optimise the spray solvent and use a variety of
different surfaces for initial sample analysis using DESI,
allows successful analysis of samples with 0.5 to 2% salt
[90].

2.2.5 A simple salt removal strategy

Figure 2A schematically presents a salt removal strategy
when using 2DE or one-dimensional (1DE) sodium doe-
cyl sulphate polyacrylamide gel electrophoresis (SDS-
PAGE) techniques, based on the current developments
discussed above. Specifically, this method is easy to
implement and relatively inexpensive. When used with
halotolerant organisms, the washing buffer step is per-
formed with a non-saline buffer at the cell harvesting
stage, whereas with halophilic organisms it is applied at
the protein extraction stage. To demonstrate the effective-
ness of this procedure, Figure 2B shows a selection of
small format (7 cm?) 2DE gels which were run for cyano-
bacterial protein extracts taken from cultures grown in 6%
NaCl. Four gels were run with the elimination of different
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salt removal steps as shown in Figure 2A, and in the final
gel the full procedure was followed.

3.0 Proteomic salt responses in a model system

The majority of proteomic studies on salt tolerance in
cyanobacteria have been conducted on Synechocystis,
using 2DE. Newly expressed or proteins with enhanced
expression in salt stressed cells have been identified, and
a group of these are termed 'stress proteins'. These studies
have contributed to the construction of the Cyanobase
database, containing over three thousand predicted pro-
tein coding genes [91]. Many of these proteins are anno-
tated as 'hypothetical’, as sequence similarity to proteins
of known function is absent. Methods for isolating
plasma, thylakoid, periplasmic and outer membrane pro-
teins have been developed, as well as isolating pure
plasma and periplasmic space proteins [41,92-96]. This
has allowed analysis of how proteins in different subcel-
lular compartments assist in cellular adaptation to high
salt.

3.1 Salt response in different cellular compartments

Figure 3 summarises the proteomics-based responses to
salt stress in a unicellular cyanobacterial cell, and Table 1
defines the corresponding conditions under which cells
were investigated. Cells were grown in BG11 media [97]
supplemented with NaCl unless otherwise stated.

3.1.1 Periplasmic Space

The periplasmic space (Figure 3) is situated between the
plasma membrane and the outer membrane. No active
ion transport mechanisms have been found in the outer
membrane in Synechocystis cells, but transport proteins
involved in the uptake of substrates are present in the peri-
plasmic space, and these could be affected by high salt lev-
els. This inspired Fulda et al. [41] to use a cold-osmotic
shock technique [98] to isolate and compare the abun-
dance of periplasmic proteins from Synechocystis grown in
low salt (2 mM or 0.01% NacCl) and high salt (342 mM or
2% NaCl). The method of periplasmic protein isolation is
unsuitable for examining adaptation to higher salinities,
as the sample fraction becomes contaminated with pro-
teins from other cellular compartments in these condi-
tions. Extracted protein fractions were separated by SDS-
PAGE, and two bands of interest were subjected to N-ter-
minal sequencing. Unfortunately, both identified pro-
teins were annotated as hypothetical [41].

By implementing 2DE for enhanced resolution with
MALDI-TOF MS, the experiment was repeated [38]. pH
4-7 1PG strips were used with 23 x 23 cm 12.5% acryla-
mide gels. MALDI-TOF MS allows protein identification
by soft ionisation methods with a TOF mass spectrometer
[75]. Protein fragments generated by protease digestion
are fixed in a solid phase matrix and ionised by laser. TOF
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(A) A simple salt removal strategy for proteomic experiments using gel electrophoresis for protein fractionation. Desalting
steps are in green boxes, example techniques in circular boxes and parameters in diamond boxes. N.B. For halophilic organ-
isms the wash step with no salt buffer must be performed at the protein extraction stage. (B) Euhalothece desalting optimisation
tests. 7 cm2 gels, pl 3—10. i) No desalting steps ii) TCA/acetone precipitation only iii) Desalting column not used iv) External salt

not washed v) Complete desalting procedure followed.

analysis reveals experimental peptide masses which can
then be matched to theoretical masses in a database. Six
and three proteins were identified as enhanced and newly
expressed, respectively, in the presence of elevated levels
of salt [38]. Several of these proteins were thought to be
involved in synthesising or modifying extracellular layers
in Synechocystis, highlighting the importance of changes in
cyanobacterial cell walls in adapting to high salinity. For
example, a protein showed significant similarity to phos-
phoglycerate mutases from Streptococci, which are
involved in polysaccharide synthesis in their capsules
[38]. Furthermore, a salt enhanced protein was found to
be homologous to cell surface lipoproteins of Mycobacteria

spp- [38].

It is apparent from this study, that functional annotation
of Synechocystis is still at an early stage, and characterisa-
tion of these salt enhanced proteins required searching for
similar functional domains present in the databases for
other organisms. A number of periplasmic proteins were
also observed to have reduced expression in saline media,
and these were attributed to the expected reduction in
protein synthesis of non-stress proteins in salt stressed
cells [38,99].

3.1.2 Membrane Proteins

A combination of blue native/SDS-PAGE and MALDI-
TOF was used to study the composition and dynamics of
membrane protein complexes in Synechocystis, perturbed
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Salt responses at the protein level. A summary of responses to varying degrees of salt stress (~2—4% w/v NaCl) in the main cel-
lular compartments of a unicellular cyanobacterium cell, as revealed by proteomics studies [[38,39,41,109]].

by three different growth modes and varying levels of
CO,, iron, or salt [96]. Blue native is a proteomic tech-
nique implemented in order to separate and study intact
protein complexes at high resolution [100,101]. It enables
further elucidation of protein function by analysing pro-
tein-protein interactions. A total of 53 protein spots were

Table I: A summary of proteomic studies in cyanobacteria.

identified in this study, corresponding to 37 different Syn-
echocystis genes [96]. A stress of 0.4 M (~2.4%) NaCl was
applied to cells for 72 hours, but this did not induce any
observable changes in the membrane protein complexes,
which agreed with previous physiological studies
(reviewed by Joset et al. [5]) that the plasma membrane

Organism NaCl concentration  Incubation period Subcellular fraction ~ Additional growth conditions* Reference
Synechocystis sp. PCC6803 342 mM or ~2% 6 days Periplasmic 29°C, 170 mmol photons m2s-! 41
Synechocystis sp. PCC6803 342 mM or ~2% 6 days Periplasmic 29°C, 170 mmol photons m2s-! 38
Synechocystis sp. PCC6803 400 mM or ~2.4%  Several generations Membranes 32°C, 50 mmol photons m2s-! 96
Spirulina platensis 800 mM or ~4.8% nla Thylakoids 30°C, 80 mmol photons m2s-! 109
Synechocystis sp. PCC6803 684 mM or ~4% 6-8 days Plasma 30°C, 80 mmol photons m2s-! 102
Synechocystis sp. PCC6803 684 mM or ~4% 5 days Cytoplasmic 30°C, 170 mmol photons m2s-! 39
The conditions and subcellular compartments investigated are defined and the studies are listed in chronological order.
* Temperature and light conditions.
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and cytoplasm are likely to be the main subcellular com-
partments affected by salinity.

Huang et al. [102] screened for proteomic changes in the
plasma membranes of Synechocystis in response to salt.
The plasma membrane represents a barrier to the sur-
rounding medium, and is likely to be responsive to envi-
ronmental salinity changes [38]. These membranes were
isolated by sucrose density gradient centrifugation and
two-phase partitioning [92]. 106 proteins were identified,
corresponding to 66 gene products, using 2DE and
MALDI-TOF MS. 25 proteins changed significantly in
abundance due to salt concentrations of 684 mM
(~4.1%). A methanol/chloroform precipitation step was
included after protein extraction to desalt and concentrate
the sample [103]. An advantage of using 2DE for protein
separation and visualisation is particularly apparent in
this study, as isoform spots were clearly visible. Abun-
dance changes in some of the isoforms imply PTM's may
play a role in protein function in the stress conditions.
Nearly one third of the salt-enhanced proteins identified
in this study are substrate binding ABC transporters [102].
An increase in glucosylglycerol-binding protein, GgtB,
was expected since Synechocystis cells can uptake this com-
patible solute from its environment. The evidence for an
interrelation between salt and iron-stress in this organism
was supported by the very high accumulation of iron
binding lipoprotein, FutAl. It has been previously pro-
posed that FutA1 plays a protective role in photosystem II
under conditions of iron deficiency [104]. Increases in
phosphate and nitrite/nitrate binding proteins have been
hypothesised as a necessity for cells to overcome salt
induced nutrient deficiency, a problem resulting from
plasma membrane structural changes [105]. Moreover, an
increase in the regulatory protein PII suggests a change in
the carbon and nitrogen balance in salt-stressed cells.

Further salt-induced proteins, thought to play significant
roles in stress, included vesicle-inducing protein in plas-
tids (Vippl), a protein involved in thylakoid membrane
biogenesis in Arabidopsis [106], membrane-bound pepti-
dyl-prolyl isomerase B, which could be involved in main-
taining the integrity of proteins in the plasma membrane
and CoxB, which supports recent work suggesting a role in
managing photosynthesis in stressed cells [39]. Some of
the hypothesised functions in salt tolerance require fur-
ther characterisation, at the protein level through, for
example, structural studies, or at the gene level via knock-
out mutations from the protein-coding genes and assess-
ment of phenotypic alterations. This is particularly true
for hypothetical proteins which have no associated func-
tion. In addition to salt regulated proteins, 21 proteins
were newly identified [102] and before further studies are
undertaken it is possible to predict function to a certain
limit. A plethora of open source software tools have been
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developed, with algorithms which help to predict cellular
functions from conserved domains. Furthermore, charac-
teristics such as hydrophobicity and attributes like lipo-
protein or sec- signals, can be used to predict subcellular
localisation [107,108].

Many proteins from the plasma membrane were associ-
ated with salt stress in Synechocystis for the first time in this
study, however, the limitations of using 2DE were recog-
nized by virtue of the fact that no integral membrane pro-
teins were identified [102].

3.1.3 Cytoplasm

Fulda et al. [39] used 2DE with MALDI-TOF to investigate
the soluble proteome response in Synechocystis cells to
approximately 4% salt, and 55 out of the 337 identified
proteins were induced. In the salt-acclimated cells,
induced proteins were organised into four groups; stress
proteins which are salt specific, general stress proteins,
enzymes involved in basic carbon metabolism and hypo-
thetical proteins.

Specific salt stress proteins included the enzyme ADP-glu-
cose pyrophosphorylase, responsible for synthesising the
precursor ADP-glucose for the compatible solute gluco-
sylglycerol. General stress proteins included molecular
chaperones GroEL1 and elongation factor-Tu. Increased
amounts of soluble electron carriers, flavodoxin and plas-
tocyanin were also observed, and these are thought to play
an important role in adjusting to stress-induced changes
in electron transfer [39]. Several enzymes involved in car-
bohydrate metabolism also accumulated, including tran-
sketolase, glycogen phosphorylase and phosphoglycerate
kinase [39]. The accumulation of the glucosylglycerol is
proposed to cause this change in carbon metabolism.

3.1.4 Thylakoids

A method for isolating pure thylakoid membrane proteins
suitable for 2DE analysis was developed nearly a decade
ago, implementing aqueous polymer two-phase partition-
ing in combination with sucrose density centrifugation
[92]. Despite this, a large scale proteomics assessment of
the salt response of the photosynthetic membranes has
not been performed. By combining traditional protein
separation and quantitation methods SDS-PAGE and
western blotting, Sudhir et al. [109] investigated the
response of thylakoid membrane proteins in the cyano-
bacterium Spirulina platensis to 0.8 M (~4.8%) NacCl. S.
platensis was isolated from sodium (150-200 mM Na+)
rich lakes and ponds and is cultured in Zarrouk medium
[109]. A 40% decrease in protein D1 from the PSII reac-
tion centre was observed. Additional abundance changes
in proteins were observed but these were not identified.
The authors undertook additional physiological studies
and postulated that a variety of effects occurred on photo-
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synthetic electron transport activities due to the marked
alterations in the composition of thylakoid membrane
proteins [109].

Vippl1 protein, (see section 3.1.2), is located in the plasma
membranes, but has been associated with thylakoid mem-
brane formation in Arabidopsis [106]. It shares sequence
similarity to stress related phage shock protein PspA
[106], and a knockout mutant created in Synechocystis led
to an inability to form thylakoid membranes. An increase
in this protein in salt acclimated cells may imply a struc-
tural reorganisation in these membranes is necessary
[102].

3.2 Confirmation methods

In these studies, a confirmation technique is often used in
parallel with newly developed proteomics workflows with
the aim of confirming their reliability and applicability.
Complementary techniques for validation of protein
abundance changes have recently been incorporated into
many proteomic studies, with western blotting being the
most widely applied [110]. This practice is normally
encouraged for several proteins. For example, immunob-
lotting analysis confirmed the expression changes of sev-
eral proteins in the study by Huang et al. [102].

3.3 Shock versus adaptation

Biological function is predominantly facilitated by pro-
teins, highlighting the power of proteomics to identify the
physiological changes which take place in cells in order to
survive adverse conditions. However, transcriptomics is
useful for assessing immediate gene expression changes,
and therefore integrating both sets of data is necessary for
a more complete systems level understanding. Neverthe-
less, proteomics can yield insight into immediate and
long-term physiological responses. Fulda et al. [39] used
2DE in a proteomics study to address the salt shock
(immediate) response versus salt adaptation (long-term)
response in Synechocystis to approximately 4% NaCl. To
produce a meaningful comparison, previously generated
transcriptomic data and a survey of changes in physiolog-
ical parameters were used to identify the most revealing
times to harvest cells. Short-term shock and long-term
adaptation times were at 2 hours and 5 days, respectively
[36,39]. A pulse 3°S-methionine labelling method was
used, allowing clear visualisation of newly induced pro-
teins from radioactive 2DE-gels. In vitro metabolic label-
ling of cells with radioactively labelled amino acids is
routinely performed, but despite advantages such as rela-
tively high energy beta emitter potential and high specific
activity, any proteins lacking methionine would be unde-
tected [111,112]. Despite the fewer induced proteins
identified compared to genes induced in a microarray
study, 90% of these identified proteins were also induced
at the transcriptional level [36].

http://www.salinesystems.org/content/4/1/1

As expected, heat shock proteins (which protect or repair
proteins), DNA and RNA-binding stress proteins and anti-
oxidative enzymes all increased in expression in the short
and long-term, in both transcriptomic and proteomic
studies [35,36,39,102]. However, only truncated versions
of the chaperone GroEL1 and the elongation factor-Tu,
were identified in the long term by proteomics, and
whether this has functional significance remains
unknown [39]. Seven enzymes involved in carbohydrate
metabolism also accumulated after 5 days, whereas a sim-
ilar pattern in gene expression was not observed. In fact,
in this study, nearly half of the data for induced genes in
acclimated cells (5 days) did not correlate with protein
inductions [39]. Therefore, the authors proposed that
PTM's may play a role in salt adaptation, particularly con-
sidering the multiple spots identified in gels correspond-
ing to the same protein.

4.0 Advances in proteomic methodologies

The studies discussed in section 3 lay the foundations for
understanding global cellular salt responses. However,
2DE is the technique invariably used for protein separa-
tion and quantification. Limitations of 2DE are apparent
when comparing proteomic data with transcriptomic
data, most significantly, coverage of the full proteome is
poor. Unfortunately, low abundance proteins, proteins
with extreme pls, membrane and membrane bound pro-
teins (due to their hydrophobicity), cannot readily be
resolved by 2DE [113]. For example, identifying and stud-
ying proteins with a pl of 4 to 7, is only part of the salt
adaptation story. A protein pH range of 4 to 7 is popular
for studying Synechocystis, as its predicted proteome is
biased towards an acidic pH [17]. Furthermore, the pres-
ence of high abundance pigment proteins, for example,
phycocyanin proteins in cyanobacteria, can cause smear-
ing in gels and reduce the quality of resolution and quan-
titation [39]. In addition to proteome coverage issues,
protein abundance changes based on staining intensity
are only semi-quantitative. Consequently, this has led to
the development of gel-free proteomics techniques, some-
times referred to as shotgun proteomics.

As mentioned previously, the rapid development in shot-
gun proteomics has led to an array of techniques to frac-
tionate complex protein samples. For example, proteins
can be separated by characteristics such as size, hydropho-
bicity or charge using size exclusion chromatography
(SEC) [69], reverse-phase (RP) chromatography [70] and
weak/strong anion exchange chromatography (WAX/
SAX) [114,115], respectively. Multi-dimensional separa-
tion schemes have also been applied at the peptide level,
where proteins are digested with an appropriate enzyme,
for example trypsin, and then separated by methods
including strong cation exchange (SCX) [71], capillary
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isoelectric focusing [72] and liquid phase isoelectric
focusing [73].

By combining an array of peptide and protein fractiona-
tion techniques prior to MS analysis, the proteome cover-
age can be increased significantly [116,117]. Gan et al.
[118] compared a combination of six fractionation work-
flows employing techniques which separate proteins via
IEF, 1-D PAGE, WAX chromatography, as well as peptide
separation using IEF or SCX, all prior to reverse phase
multi-dimensional liquid chromatography and MS analy-
sis [118]. 776 proteins were identified in Synechocystis,
representing over 20% of the total predicted proteome. In
conjunction with technical advances in this area, the need
to increase the representation of an organism's proteome
continues. One challenge is to increase the solubility of
membrane proteins whilst maintaining compatibility
with downstream processes [119,120]. This can be
achieved through the use of high percentage organic sol-
vents and acids. Moreover, the use of strong zwitterionic
and non-ionic detergents have been shown to improve
the solubilisation of membrane proteins from cyanobac-
teria [121]. In a study conducted on the filamentous
cyanobacterium, Anabaena variabilis, such techniques led
to the identification of 646 (13%) proteins [121].

With the ability to identify hundreds of proteins in a sin-
gle proteomics experiment, the need to quantify differen-
tial protein abundance efficiently and accurately, has been
realised. It is now possible to perform a large scale pro-
teome study by identifying and quantifying proteins from
complex samples. Quantitation using shotgun methods
has progressed at an impressive rate utilising isotope
labelling strategies such as SILAC. Isotope tags can also be
added enzymatically by transferring 180 to peptides from
water [122]. In addition, chemical reactions are used
where reagents are tagged to the protein or peptides, and
these provide internal standards for quantitation. Exam-
ples include isotope coded affinity tags (ICAT) [123],
mass coded abundance tagging (MCAT) [124], the AQUA
strategy (for absolute quantitation) [125], and isobaric
tags for relative and absolute quantification (iTRAQ)
[126].

The iTRAQ procedure has recently gained in popularity
[127-130]. It is usually based on a peptide labelling strat-
egy, where four or eight amine reactive isobaric reagents
are used, enabling the comparison of several phenotypes
in one experiment (including technical and biological
replicates). The quantification occurs at the MS/MS stage,
and thus requires a tandem mass spectrometer [131]. MS/
MS leads to fragmentation of peptides into individual
amino acids allowing a far more accurate sample analyses.

http://www.salinesystems.org/content/4/1/1

iTRAQ has been demonstrated as a useful, robust and reli-
able tool for proteomics [131], with several advantages
over densitometry and other labelling techniques includ-
ing quantitation accuracy and overall workflow efficiency.
A typical iTRAQ experiment takes no more than several
hours over approximately 2 to 3 days to label and pre-
process the samples, 2 to 3 days (based on 20 fractions x
135 minutes runs) to separate and analyse by MS, and 1
day to initially process the MS data (Figure 4). Moreover,
these runs would include biological and technical repli-
cates [129]. This time-scale and work load is considerably
less than a 2DE work-flow which requires running 4 sep-
arate gels (in triplicate). Each gel requires 15t dimension
separation (day 1), 2nd dimension separation (day 2),
staining (overnight), spot matching and identifying spots
of interest, cutting all spots (approximately 500-1000)
and tryptically digesting (at least several days), peptide
extractions (several days), and finally MS analysis (several
days).

Choe et al. [132] demonstrated the consistency of obser-
vations using 2DE and iTRAQ), as well as the reproducibil-
ity of the experiments. They reported that half of the
quantified protein expression ratios have a coefficient of
variation (CV) less than 0.31 using 2DE and less than 0.24
using isobaric tags; whereas 95% of the quantified protein
expression ratios have a CV less than 0.81 using 2DE and
less than 0.53 using isobaric tags [132]. Wu et al. [133]
compared iTRAQ to DIGE and ICAT, and reported its
superior quantitative sensitivity. A survey of technical,
experimental and biological variations using the tech-
nique was also undertaken using Synechocystis as a model
organism [129]. Furthermore, Chong et al. [128] used
iTRAQ with Synechocystis, demonstrating the use of a mul-
tiple injections strategy to improve proteome coverage. An
average of 218 proteins was identified and the issue of
abundant pigment proteins was highlighted. There have
been no studies to date, looking at salt stress or adaptation
in cyanobacteria, using shotgun proteomic techniques.

5.0 Challenging systems

Synechocystis is a model organism for photosynthesis
research and has therefore been investigated extensively. It
is also the model organism for cyanobacterial and higher
plant salt stress studies, and this is the case in proteomics.
Its genome is fully sequenced which makes identification
of proteins through MS and database searching, relatively
simple. The expectations are that discoveries made in salt
stress proteomics studies in Synechocystis, will provide
insight into the adaptive mechanisms in other organisms.
Uncovering the proteomic response of this model organ-
ism has made an invaluable contribution to understand-
ing salt acclimation. However, cyanobacteria are ancient
life forms and evolutionary pressures have created many
diverse species, including those which can survive in
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higher salt concentrations. Unfortunately, the majority of
these cyanobacteria do not have their genomes
sequenced, so how is it possible to identify proteins and
hence study the proteome of an unsequenced organism?
This is an area known as cross-species proteomics, and is
yet to be fully exploited [134,135].

5.1 Cross species proteomics

Accompanying the rapid growth in the number of fully
sequenced genomes, is the increasing number of protein
sequences present in databases. This maximises the
chance of identifying proteins from a non-sequenced
organism using conventional protein identification soft-
ware. Conventional software, for example Mascot (Matrix

Science, London, UK) relies on matching of tryptic pep-
tides to theoretical peptides present in databases. With
increasing numbers of sequenced proteins, the chance of
an unsequenced organism producing an exact same tryp-
tic peptide is correspondingly enhanced. Developments
in the area of MS and bioinformatics have also signifi-
cantly expanded the applicability of cross-species pro-
teomics [134-138]. Mass spectrometry-driven BLAST (MS
BLAST) is a database search protocol which uses a list of
peptide sequences generated by interpretation of MS/MS
spectra using ProBLAST software [135,139]. Significant
hits in MS BLAST are colour-coded based on a high scor-
ing pairs (HSP's) algorithm. More recently, open source
software SPIDER uses an alternative algorithm for identi-
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fication of novel proteins [140]. Collectively, they rely on
the interpretation of MS/MS spectra using de novo
sequencing, a technique which has also advanced with
new powerful software, for example PEAKS and OLAV
[141,142].

The main challenge in cross-species proteomics is to pro-
duce high confidence protein identifications, and this
requires meeting set criteria. Using probability calcula-
tions and cut-off scores in specific analysis software and
fulfilling the guidelines generated for identification (I1.D.)
methods in proteomics journals [143], for example,
requiring 2 or more peptides per protein, should be
included. One approach is to design degenerate nucle-
otide primers for the protein coding gene by using peptide
sequences detected in the MS. Alternatively, alignment
files generated from nucleotide sequences from related
organisms, which are present in nucleotide databases, can
be used. Successful sequencing of the gene provides verifi-
cation of the protein identification, and therefore extra
confidence in the identification methods implemented. A
method using metabolic labelling combined with gel elec-
trophoresis [68,144] is particularly advantageous. This
method was initially designed to provide a fast and accu-
rate method for protein quantification, however, it
presents the opportunity to verify protein I.D.'s for non-
sequenced organisms. In this method, proteins are meta-
bolically labelled by culturing in the presence of a heavy
isotope, for example, 13C or 15N. Cyanobacteria are often
cultured in BG11 media [97], and the main source of
nitrogen in this media is sodium nitrate, and therefore
replacing this with an isotopic Na'>NQyj is relatively sim-
ple, as long as a sufficient number of generation times are
included for maximum incorporation efficiency (and it is
confirmed that the organism cannot fix atmospheric
nitrogen). These light (14N) and heavy (}°N) peptides can
be distinguished by mass-to-charge scale on the mass
spectrometer, and the ratio in peak height or area between
the two forms correlates with protein abundance. How-
ever, the difference in mass between labelled and unla-
belled versions of the same peptide provides extra
identification evidence, via imposition of an elemental
constraint [145].

Protein fractionation is important to reduce sample com-
plexity, and thereby allowing more successful interpreta-
tion of meaningful MS spectra, due to issues involved with
ion suppression and duty cycle [89,146]. 2DE can be used
for protein separation which allows a further identifica-
tion confirmation by matching gel positioning with pre-
dicted isoelectric point and molecular weight. Using
highly saline samples with 2DE would require a salt
removal workflow as illustrated in Figure 2. Similarly,
SDS-PAGE allows confirmation by molecular weight, but
has the added advantage of improved resolution of hydro-
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phobic proteins [144]. A work-flow has been developed
very recently to increase protein identifications in non-
sequenced organisms using complex samples with high-
throughput methods such as iTRAQ, in which case pro-
tein fractionation via gel electrophoresis is eliminated
[147].

It has been demonstrated by comparative genomics [148]
that the difference in salt tolerance between glycophytic
and halophytic plants is quantitative, and not necessarily
qualitative. Therefore, tolerance mechanisms may be con-
served amongst all plant species. This highlights the
importance in studying the salt response in alternative
cyanobacteria despite the likelihood that 'new' proteins
will not be discovered in non-sequenced isolates and
there is more chance that a comparison to existing systems
will be performed.

5.2 Proteomics of an unsequenced extreme halotolerant
cyanobacterium

We have isolated a eurohaline cyanobacterium from a salt
lake in southern Libya, in the heart of the Sahara. The
salinity of the lake varies by sampling location and sea-
son, but can reach up to 16% w/v [149]. This microorgan-
ism can adapt to large variances in salt concentration, and
unlike halophiles, does not require salt for survival. It
therefore represents an ideal system to study cellular
responses to adaptation in both high and low salt envi-
ronments. This ability of adapting to a large range of salin-
ities may actually be more difficult to achieve than the
fixed salt requiring metabolism of halophiles.

Furthermore, it is an environmental isolate and not
sequenced, presenting a challenge for protein identifica-
tion. The method combining gel electrophoresis and met-
abolic labelling discussed above was used to study
adaptation of this organism to the addition of 0, 3, 6 and
9% salt (NaCl) to BG-11 [144]. Proteins were identified
using Mascot (relying on generating identical tryptic pep-
tides to those present in the database) and MS BLAST,
where extra proteins could be identified via de novo
sequencing and homology searching. In total, 383 unique
proteins were identified and 23 different organisms were
required as identification sources (17 different cyanobac-
teria), allowing an in-depth analysis of its adaptive
response to high and low salinity [144]. This particular
cyanobacterium shares many similar salt-tolerance mech-
anisms to Synechocystis, albeit in higher salt concentra-
tions. Euhalothece increases production of stress
chaperones and antioxidative enzyme superoxide dis-
mutase. There appear to be alterations to the cell wall,
decreased pigment production as well as significant alter-
ations in central intermediary metabolism, including an
increase in the synthesis of compatible solutes. However,
its proteome displays completely different patterns when
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grown in no salt (i.e. 0% NaCl added). An increase in
stress related chaperones was accompanied by enhanced
abundance of carbon uptake and fixation proteins and
periplasmic iron binding protein. Further studies need to
be undertaken to further understand this response to low
salt. Proteins were also identified as salt responsive which
play no noticeable role in Synechocystis tolerance, and
these also require further characterisation.

Conclusion

With the increasing number of genome sequencing
projects being undertaken and rapid advances in pro-
teomics techniques, the opportunity for making greater
discoveries in the post-genomics field has been recog-
nised. In effect, genomic information can be decoded into
a functional protein interpretation.

Understanding the salt response in cyanobacteria will
make a relevant impact on ultimately understanding the
detrimental effects of salinity on crops plants. Syne-
chocystis is the best characterised cyanobacterium from a
salt stress perspective and this stands true in the emerging
field of proteomics. Gaining a systems level understand-
ing of the salt stress response in this cyanobacterium
requires generating and interpreting quantitative pro-
teome data. Techniques are constantly and rapidly being
developed and tested to overcome current limitations,
and this includes the opportunity to study more difficult
and challenging systems.

Synechocystis alters the protein composition of extracellu-
lar layers in response to salt stress, and in particular
increases expression of ABC-transporters involved in
nutrient acquisition in the plasma membrane. A reorgan-
isation of the thylakoid membranes seems likely through
the identification of salt-induced Vipp1, and the increase
in energy capacity using PSI and respiration is important
for acclimation. Specific salt stress proteins, as well as gen-
eral stress proteins play an obvious role, and large changes
in carbon metabolism are seen and these may be related
to the long-term production of compatible solutes.
Finally, a large array of hypothetical proteins were identi-
fied as playing a crucial part in adaptation, but only a
small number had associated putative functions. These
proteins require further investigation.

Important advances have been made in increasing pro-
teome coverage through novel combinations of protein
and peptide fractionation techniques. By combining reli-
able protein identifications with accurate and reproduci-
ble quantitation data, information on hundreds of
proteins can be obtained in a single experimental work-
flow. The use of iTRAQ technology is gaining popularity
here. Finally, proteomics is no longer confined to those
organisms which have their genomes partially or fully
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sequenced. Efforts to develop techniques and interpreta-
tion software to analyse these proteomes, is beginning to
reward the scientific community by producing interesting
findings on the biological behaviour of fascinating, envi-
ronmentally-significant organisms.
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