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Abstract

Background: The Cariaco Basin is characterized by pronounced and predictable vertical layering of microbial
communities dominated by reduced sulfur species at and below the redox transition zone. Marine water samples
were collected in May, 2005 and 2006, at the sampling stations A (10°30′ N, 64°40′ W), B (10°40′ N, 64°45′ W) and D
(10°43’N, 64°32’W) from different depths, including surface, redox interface, and anoxic zones. In order to enrich for
sulfate reducing bacteria (SRB), water samples were inoculated into anaerobic media amended with lactate or acetate
as carbon source. To analyze the composition of enrichment cultures, we performed DNA extraction, PCR-DGGE, and
sequencing of selected bands.

Results: DGGE results indicate that many bacterial genera were present that are associated with the sulfur cycle,
including Desulfovibrio spp., as well as heterotrophs belonging to Vibrio, Enterobacter, Shewanella, Fusobacterium,
Marinifilum, Mariniliabilia, and Spirochaeta. These bacterial populations are related to sulfur coupling and carbon cycles
in an environment of variable redox conditions and oxygen availability.

Conclusions: In our studies, we found an association of SRB-like Desulfovibrio with Vibrio species and other genera that
have a previously defined relevant role in sulfur transformation and coupling of carbon and sulfur cycles in an
environment where there are variable redox conditions and oxygen availability. This study provides new information
about microbial species that were culturable on media for SRB at anaerobic conditions at several locations and water
depths in the Cariaco Basin.
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Background
The Cariaco system is a depression located on the northern
continental shelf of Venezuela in the Caribbean Sea and is
largest true marine permanently anoxic marine water body
in the world. The Basin, 160 km long and 50 km wide, is
divided into two sub-basins, each with a maximum depth
of 1400 m and separated by a saddle at 900 m water depth.
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Based on redox conditions and oxygen content, the basin
is divided into three layers: oxic (~ 0-250m); redox transi-
tion (~ 250–450 m); and anoxic (~ 450 to 1400 m) [1-4].
The basin water column is characterized by a pronounced
vertical layering of microbial communities. The oxic
layer possesses the most complex trophic structure,
dominated by processes such as photosynthesis, aer-
obic heterotrophy and nitrification. The redox transi-
tion zone is biogeochemically stratified, appears less
complex and predominant processes are chemoautotrophy,
fermentation, denitrification, and anaerobic respiration.
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The anoxic zone presumably has the simplest trophic
structure that appears to be supported by fermentation,
sulfate reduction, methanogenesis and anaerobic methane
oxidation [3]. Many studies have been conducted in the
Cariaco Basin to understand how microorganisms are dis-
tributed in the stratified water column environment and
how they influence geochemical processes [1,3,5]. Interest-
ingly, high levels of sulfide present in the Cariaco Basin
have been attributed to biological sulfate reduction [6].
This is the first attempt to identify bacteria related with
sulfate reduction using enrichments cultures for the
Cariaco Basin.
Several studies have been published describing the mi-

crobial community associated with the Cariaco Basin sulfur
cycle. Tuttle and Jannasch (1973) isolated several sulfide
and thiosulfate-oxidizing bacteria and Morris et al. (1985)
isolated Alteromonas sp. from thiosulfate-containing en-
richment cultures [7,8]. With the development of molecu-
lar biology, culture-independent methods have been used
to detect SRB populations in the Cariaco Basin [1,5,9]. To
Table 1 Physico-chemical parameters measured in the Cariaco

Year 2

Station Zone Depth (m) Temperature (°C)

A Oxic 230 17.90

Interface 270 17.69

Anoxic 900 17.03

B Oxic 235 17.83

Interface 275 17.63

Anoxic 670 17.06

Year 2

Station Zone Depth (m) Temperature (°C)

A Oxic 100 21.08

Interface 300 17.64

Anoxic 400 17.46

500 17.23

B Oxic 215 17.97

Interface 260 17.75

290 17.70

Anoxic 325 17.57

640 17.10

D Oxic 40 23.85

180 18.18

Interface 270 17.80

Anoxic 365 17.52

500 17.40

*Data from http://www.imars.usf.edu/CAR/.
† Low DO values in oxic zones over the limit of interface layer where DO decays an
PSU: Practical Salinity Units.
ND: Not determined.
explore the diversity of bacteria in the Cariaco Basin in-
volved in sulfate reduction, we used SRB enrichment cul-
ture complemented with identification of the enriched
bacteria by gradient gel electrophoresis (DGGE).

Results
Depth profiles of temperature, salinity, and dissolved
oxygen in the water column at all stations for two years
are shown in Table 1. Temperatures varied from 17.10
to 23.85°C, with the greater variation between the sur-
face and interface zone. Salinity was stable throughout
the water column at all depths and stations sampled,
ranging between 36.26 to 36.88 PSU. Dissolved O2 con-
centration peaked at 40 m (4.009 mL/L) and declined
dramatically at depths below 200 m. The maximum mea-
sured sulfide concentration was obtained at the greatest
depth for all stations during both years of sampling. These
physicochemical patterns are typical of the Cariaco Basin,
showing redox zonation and similar to those reported by
other authors [2,4,6-12].
Basin during the study

005

Salinity (PSU) Dissolved O2 (mL/L) *H2S (μM)

36.43 0.0738† ND

36.39 0.0688 1.22

36.26 0.0653 51.47

36.42 0.0711† ND

36.38 0.0674 0.69

36.27 0.0646 ND

006

Salinity (PSU) Dissolved O2 (mL/L) *H2S (μM)

36.79 3.2116 ND

36.36 0.0157 5.39

36.33 0.0113 14.3

36.29 0.0113 25.55

36.41 0.0245† ND

36.38 0.0122 6.62

36.37 0.0129 7.07

36.35 0.0131 11.09

36.26 0.0186 38.46

36.88 4.0087 ND

36.45 0.5738 ND

36.39 0.0135 0.21

36.34 0.0197 13.31

36.33 0.0196 18.86

d H2S increases.

http://www.imars.usf.edu/CAR/
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Bacteria enrichments in SRB media
Twenty-four cultures, in which black coloration with fer-
rous sulfide precipitation was observed, were selected for
further investigation. Using TWIN pack medium, two cul-
tures were obtained during 2005: one from station A and
another from station B. Using TP medium, we obtained
thirteen cultures during 2006: one from station A, six from
station B, and six from station D. Using API medium, nine
cultures were obtained during 2006: three from station A,
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Figure 1 16S RNA gene amplified from DNA isolated from cultures. S
primers in 6% polyacrylamide gels with 0–100% denaturing gradient. Pane
cultures. The number above each lane indicates the culture name and the
M are the ladders: M1= Aquimarina muelleri, M2= Escherichia coli, M3= Sulfu
smegmatis. The sequenced bands are identified by number.
two from station B and four from station D (Figure 1). All
of the cultures had variable cell morphology, with curved
rod-shaped bacteria with polar spores predominant.

Molecular identification
All 16S RNA gene amplicons from the 24 cultures were
separated in the DGGE gels (Figure 1). The patterns com-
prised several bands, suggesting that different bacterial
types were present. Sixty-seven DGGE bands were excised
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and sequenced, but only 23 quality sequences were
generated. These sequences were compared with existing
sequences in the NCBI public database using the BLAST
algorithm. Results of the BLAST analyses are summarized
in Table 2. A prevalent band in the DGGE gels was ob-
served for all samples, except D3 TP (305 m). Bands show-
ing similar mobility gave highly similar or identical
sequences with the molecular marker M4 (Vibrio
alginolyticus) (Figure 1). Several of these bands (6, 40, 41,
46, 53, 55 and 63) were sequenced and shared 99-100%
similarity with Vibrio species, forming a linkage with V.
campbelli, V. harveyi, and V. alginolyticus. Band 63
was distant from the main Vibrio species cluster,
appearing to be more closely related to Vibrio fortis
(98%) (Figure 2). Additionally, two bands (17, 19)
showed 96% similarity with the Vibrio cluster, forming
Table 2 Bacteria detected in the present study

Station Zone Depth Culture/ Sample Band closest

A Oxic 230 m A3.1 TWIN 39 Uncultu

Uncultu

40 Vibrio p

Interface 300 m A3 API 6 Vibrio s

Anoxic 400 m A8 TP 41 Vibrio p

500 m A9 API 8 Uncultu

Fusoba

9 Uncultu

Fusoba

B Oxic 215 m B7 TP 46 Vibrio s

235 m B3 2 TWIN 1 Uncultu

Uncultu

Interface 260 m B1 TP 49 Uncultu

Fusoba

51 Uncultu

Fusoba

B1 API 52 Enterob

290 m B2 API 11 Uncultu

Marinif

13 Desulfo

15 Desulfo

B2 TP 53 Vibrio h

Anoxic 325 m B3 TP 55 Vibrio p

640 m B4 TP 17 Vibrio s

19 Vibrio s

D Oxic 40 m D5 API 57 Spiroch

58 Uncultu

Interface 270 m D2 TP 59 Marinila

Anoxic 365 m D7 TP 63 Vibrio s

500 m D4 TP 67 Shewan
a clade with V. shilonii and V. aestuarianus (Table 2
and Figure 2). These results indicate that Vibrio spe-
cies are common in our enrichments from Cariaco
Basin water column.
Three bands showing similar migration patterns had

high sequence similarity (96–99%) with the 16S rRNA of
bacteria belonging to the Desulfovibrio genus (Figure 3).
Bands 13 and 15 clustered with a Desulfovibrio sp. isolated
from a shallow submarine hydrothermal system in a trop-
ical environment [13]. Band 58 had 99% similarity with an
uncultured Desulfovibrio from sediment samples of a
saline meromictic Lake in Japan [14] and clustered with
D. zosterae at ≥ 96% similarity (Table 2 and Figure 3). The
four other bands in the TP cultures from several depths
(215–400 m), with similar patterns as Desulfovibrio, were
observed (Figure 1) but not successfully sequenced. Over
Blast relative (GenBank accession number) % identity

red bacterium clone 1NT1c10_D09 (GQ413739) 99

red Bacteroidetes bacterium clone PG-16-1-2 (EU626578) 93

arahaemolyticus (EU155540) 99

p. (EU854873) 99

arahaemolyticus (GU064371) 99

red bacterium clone 1NT1c10_A05 (GQ413699). 99

cterium perfoetens (M58684) 95

red bacterium clone 1NT1c10_A05 (GQ413699) 99

cterium perfoetens (M58684) 97

p. (EU854855) 99

red bacterium clone SGUS1101 (FJ202956) 99

red Clostridia bacterium clone 4DP1-A6 (EU780347) 99

red bacterium clone 1NT1c10_A05 (GQ413699) 99

cterium perfoetens (M58684) 96

red bacterium clone 1NT1c10_A05 (GQ413699) 99

cterium perfoetens (M58684) 96

acter cloacae ATCC13047-T (AJ251469) 100

red bacterium clone RefT1c10 (GQ413678) 99

ilum fragile (FJ394546) 96

vibrio sp. An30N (AB301719) 99

vibrio sp. An30N (AB301719) 96

arveyi (HM008704) 99

arahaemolyticus (FJ547093) 100

p. (GU223598) 99

p. (EF587982) 98

aeta sp. Antartic (M87055) 95

red bacterium clone L-D-2 (AB154510) Desulfovibrio sp. 98

bilia salmonicolor strain AQBPPR1 (GU198996) 95

p (FJ952814) 99

ella sp (GQ203107) 98



Figure 2 Phylogenetic tree of partial 16S rRNA sequences of genus Vibrio isolated from the Cariaco Basin. Tree was constructed using
Neighbor-Joining algorithm. Bootstrap values are based on 1000 replicates and no values are given for groups with Bootstrap values less than
50%. The scale bar represents 0.01 (1%) nucleotide sequence difference.
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all, the results indicate that several Desulfovibrio species
are present in the Cariaco water column at depths be-
tween 40 to 400 m (Table 2).
A representative of another genus located at the

interface at station B and in the anoxic zone at station
A was Fusobacterium, represented by four bands
(Table 2). Bands 9, 49, and 51 showed 100% similarity
and 99% with band 8, forming a group with an uncultured
bacterium clone (GQ413699) and Fusobacterium perfoetens
(Figure 3). Sequences belonging to Enterobacter, Shewanella,
Marinifilum, Mariniliabilia and Spirochaeta were
also identified in the Cariaco Basin water column en-
richments (Table 2 and Figure 3). Enterobacter clo-
acae, a γ-proteobacteria was detected at 260 m in the
interface zone of Station B. Spirochaeta sp., Mari-
niliabilia sp. and Shewanella sp. were found in the oxic
(40 m), interface (270 m), and anoxic (500 m) zones, re-
spectively, at Station D. Bands 63 (Vibrio sp.) and 67
(Shewanella sp.) had a similar migration pattern
(Figure 1) and their sequences were 94% similar. Both,
however, belong to γ-proteobacteria (Figure 3). Band
59 had 96% similarity with Mariniliabilia, an uncul-
tured clone from a saltern evaporative lagoon in
Puerto Rico, belonging to the Bacteroidales, while
band 57 had 95% similarity with a Spirochaeta strain iso-
lated in Antarctica (Figure 3).
Band 11 from the interface at station B (290 m)

showed 96% similarity with Marinifilum fragile and 99%
with an uncultured bacterium clone from coral reef sam-
ples in the Philippines [15]. The last of the bands that
were sequenced (1 and 39) were from the oxic zone of
Station A and matched with uncultivated clones most
closely related to the Firmicutes and Bacteroidetes phyla
(Table 2 and Figure 3). All eight genera detected in this
study are strictly or facultative anaerobic bacteria with
some relationship to sulfur cycling.

Discussion
Isolation of the vast majority of bacteria in pure culture
from the environment is hindered by lack of knowledge
of specific culture conditions and by the potential syner-
gism between organisms [16]. Recently, molecular ap-
proaches, such as rRNA analysis, have been used to
determine bacterial species composition of microbial
communities [16,17] and sequences of genes allow
grouping and identification of the microorganisms. Gen-
etic fingerprinting of microbial communities by DGGE
provides banding patterns that reflect the genetic
diversity of the community [16] or, as in this study, the
diversity of a portion of the culturable community.
DGGE of PCR-amplified gene fragments is one of the
fingerprinting techniques used to separate fragments of
identical length on the basis of primary sequence and
base composition [16,17]. Different DGGE bands, indi-
cating several different bacteria were detected and se-
quenced and the bands were identified as being derived



Figure 3 Phylogenetic tree of partial 16S rRNA sequences obtained from the Cariaco Basin. Tree was constructed using Neighbor-Joining
algorithm. Bootstrap values are based on 1000 replicates. The scale bar represents 0.05 (5%) nucleotide sequence difference.
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from the genera Vibrio, Desulfovibrio, Enterobacter,
Shewanella, Fusobacterium, Marinifilum, Mariniliabilia and
Spirochaeta. Although 200bp sequence length can be con-
sidered too short for a phylogenetic analyses we founded
that ours sequences correspond to genera, groups and
classes like Vibrio sp., CFB group, gamma and delta
proteobacteria that has been reported in the water column
of the Cariaco basin previously [1,5,9,10,12].
The genus Vibrio encompasses a diverse group of het-

erotrophic marine bacteria and is widespread in the
aquatic environment, occupying a variety of ecological
niches. There are indications that vibrios play a role in
nutrient cycling by taking up dissolved organic matter
[18]. Vibrio-affiliated sequences were detected by DGGE
gel analysis in the sample from both years (Figure 1) and
16S rRNA sequence similarity with of V. campbellii,
V. harveyi, and V. alginolyticus (Figure 2). The Vibrio
core cluster (including Vibrio harveyi, V. alginolyticus
and V. campbellii) is often difficult to resolve solely
by 16S rRNA gene heterogeneity, since species within
the V. harveyi clade has a very high degree of both
genetic and phenotypic similarity. These species have
more than 99% sequence identity in the 16S rRNA
gene [19,20].
Vibrio harveyi is found in a free-living state in aquatic

environments and as part of the normal microbiota of mar-
ine animals. However, many variants of V. harveyi have
been recognized as significant pathogens of aquacultured
marine fish [21,22], crustaceans [23], lobsters [24], and
corals [25]. Moreover, since 1993, V. harveyi has been re-
covered from diseased fish and penaeids in Venezuelan wa-
ters close to the Cariaco Basin (Paria Peninsula, Sucre
State) [21].
Three bands 17, 19 and 63 had low 16S rRNA similarity

(around 96-98%) with known vibrio species (Figure 2).
Bands 17 and 19 were 96% similar to Vibrio shilonii. This
species has been associated with healthy or necrotic corals
in the Caribbean and Pacific reefs [18,26-30]. V. shilonii
has recently reported in Cariaco Basin waters in the oxic
layer using specific primers for Vibrio species in Station A
[12] while we founded at 640 m depth (anoxic zone) in Sta-
tion B. Band 63 is more closely related to V. fortis (98%).
This species was detected directly in water samples be-
tween 200 m and 1300 m of the Station A in a previous re-
port [12] were becomes a prominent Vibrio sp. in the
redoxcline and anoxic zone. Furthermore, Raina et al.
(2009) found Vibrio and Shewanella species to be able to
degrade the sulfur compounds, e.g. DMSP, DMS and
acrylic acid, associated with coral reef tissue and in the sur-
rounding water, suggesting a role for these genera in the
biogeochemical cycling of sulfur [31].
Expected was the finding of Desulfovibrio in the SRB

culture (Figure 3). During the last two decades, an increas-
ing number of novel sulfate-reducing bacteria have been
isolated from a wide variety of environments, where
strains of the genus Desulfovibrio are commonly found
[32,33]. In this study, we detected Desulfovibrio species in
the water column at 40 to 400 m depth, between the oxic
and strictly anaerobic zones. Hastings and Emerson
(1988) reported sulfate reduction in the presence of
oxygen in and above the chemocline of the Cariaco
basin and recent reports, using molecular techniques,
showed sulfate reducing δ-proteobacteria cells were
mainly associated with the oxic-anoxic interface zone
and in the water column up to the aerobic zone (30 m)
[1,5,9]. The Desulfovibrio phylotypes detected in this
study were most similar to the uncultivated environmental
clones of sulfate-reducing δ-proteobacteria and those
mainly from tropical marine environments (Table 2).
Other bacteria identified among our cultures were

Enterobacter, Shewanella, Fusobacterium, Mariniliabilia
and Spirochaeta (Table 2 and Figure 3). Spirochaeta genus
was report in sediments from Guaymas Basin [34].
Enterobacter sp., Fusobacterium perfoetens and Spirochaeta
sp. are active in marine biocorrosion, formation of biofilms
on carbon steel surfaces, and corrosion of oil field pipelines
[35-37]. Our study showed four bands that were most
similar to an uncultured bacterium clone related to
Fusobacterium that had been isolated from coral reef sam-
ples [15]. Shewanella sp. has been associated with Vibrio
sp., in the corrosion of carbon steel in saline media. These
facultatively anaerobic bacteria can consume residual oxy-
gen and thereby provide ecological niches for growth of
SRB. Depending on environmental conditions, Shewanella
sp. can produce hydrogen sulfate from elemental sulfur, re-
duce ferric iron and use cathodic hydrogen, competing
with SRB for H2 as an energy source [38].
The genus Marinilabilia was created to include

the marine, facultative anaerobic Cytophaga species,
Cytophaga salmonicolor and Cytophaga agarovorans [39].
Taxonomic investigations have shown an overlap between
the genera Cytophaga and Flavobacterium and these
groups were then called the Cytophaga-Flavobacterium
complex. Molecular investigations revealed an unexpected
relationship between the Cytophaga-Flavobacterium
group and the genus Bacteroides (CFB group) [39,40]. The
CFB group had previously been reported to occur
throughout the entire water column in the Cariaco Basin
[1,9], in sediments from Guaymas Basin [34] and in anoxic
cultures of rice paddy soil [41]. Our study showed that
Marinilabilia salmonicolor, Marinifilum fragile, and an
uncultured Bacteroidetes marine species of the CFB group
were present, along with SRB, near the redox interface.
The lactate-sulfate media can enrich for SRB using lac-

tate as an electron donor for the reduction of sulfate.
However, other anaerobic or facultative microbes not re-
ducing sulfate may also be found. Here we analyzed en-
richments which showed the presence of a black FeS



Figure 4 Cariaco basin map. Stations (Sta.) indicated by circles. Isobaths are in meters. Arrows indicate pathways of water intrusion from the
Caribbean Sea. Sta. A: Station of oriental depression (10°30’N, 64°40’O); Sta. B: Station 700 m deep (10°40’N, 64°45’O); Sta. D: Station between the
Araya and Cubagua sills (10°43’N, 64°32’O). This figure is adapted from Lin et al. (2008).

Bozo-Hurtado et al. Aquatic Biosystems 2013, 9:17 Page 8 of 11
http://www.aquaticbiosystems.org/content/9/1/17
precipitate, indicating that some sulfate reduction must
have occurred and found by DGGE other bacterial groups
like ganma proteobacteria and CFB on those enrichments
associated with Desulfovibrio species, showing the lack of
specificity of lactate-sulfate media for SRB enrichment.

Conclusions
Many studies have been conducted to identify the mi-
croorganisms present in the stratified environment of
the Cariaco Basin and how they influence geochemical
processes [1,3,5]. The high levels of sulfide present in
the basin have been attributed to biological sulfate re-
duction [6]. However, very few studies have included en-
richment for bacteria associated with sulfur cycling in
this particular environment. In our studies, we showed
an association of SRB-like Desulfovibrio with Vibrio spe-
cies and other genera that have a previously defined rele-
vant role in sulfur transformation and coupling of
carbon and sulfur cycles in an environment where there
are variable redox conditions and oxygen availability.
This study provides new information about microbial
species that were culturable under these conditions at
several locations in the Cariaco Basin.

Methods
Sampling site and physico-chemical measurements
The Cariaco Basin is currently the focus of the CARIACO
time series, a cooperative United States-Venezuelan
research project (http://www.imars.usf.edu/CAR/), and is
located on the Venezuelan continental shelf (Figure 4).
The basin is isolated from the rest of the Caribbean Sea by
a 150 m deep sill connecting Isla Margarita to Cabo
Codera on the Venezuelan mainland [11,42].
Five hundred milliliters of seawater were collected at

different depths (40–230, 260–300, and 325–640 m for
oxic, interfase and anoxic water column zones) on May
25–27, 2005, and May 19–20, 2006 (CAR-112 and 122, re-
spectively), at three locations (Figure 4), including the
CARIACO time-series station (station A: 10°30′N 64°
40'W), a station southeast of La Tortuga Channel in water
about 600 m deep (station B: 10°40′ N 64°45'W), and a
station between the Cubagua and Araya sills (station D:
10°43'N 64°32'W).
Water column sampling was conducted aboard the R/

V Hermano Gines, operated by Estación de
Investigaciones Marinas (EDIMAR), Fundación la Salle
de Ciencias Naturales, Margarita Island, Venezuela and
samples were collected with a SeaBird rosette, accom-
modating 12 TFE-lined, 8-L Niskin bottles. Profiles of
temperature, salinity, and O2 were obtained with a
Seabird conductivity-temperature-depth (CTD) system
with attached SBE 43 oxygen probe. The Niskin bottles
were slightly pressurized with N2 during sampling to
minimize contact with O2. Based on redox conditions
and oxygen content for the sampling cruises, oxic layer
was considered between (~ 0–240 m); redox transition

http://www.imars.usf.edu/CAR/
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interface (~ 245–320 m); and anoxic layer (~ 325 to
900 m).

Culture conditions
Cultivation of SRB in sealed serum bottles containing fil-
ter sterilized seawater amended with three different cul-
ture media: Twin Pack (Twin) medium (per liter of
distilled water: K2HPO4, 2.00 g; MgSO4•7H2O, 0.10 g;
CaCl2•2H2O, 0.10 g; ammonium sulphate, 0.10 g;
FeCl3, 0.02 g; sodium thiosulfate, 10.0 g; pH adjusted
at 7,8 ±0,2) supplemented with 0.2% lactate; Triple
Pack (TP) medium (HIMEDIA, India) supplemented
with 0.2% lactate as a carbon source and a solution of
ferrous ammonium sulfate (0.0392 mg/L) and sodium
ascorbate (0.01 mg/L) as reducing agent; and Modified
American Petroleum Institute (API) medium (HIMEDIA,
India), supplemented with ascorbic acid (0.1 g/L) as a re-
ducing agent [43] and using 0.5% acetate as a carbon
source. Each culture medium was inoculated with 10 mL
of 20 water samples (6 samples for 2005; 14 samples for
2006) by duplicate and incubated at room temperature for
30 days under a gas mixture consisting of 20% CO2: 80%
N2. 120 cultures were performed in total.

DNA extraction and PCR
DNA was extracted from the Twin, TP, and API cultures
using the Microbial DNA Isolation kit (Mo Bio Labora-
tories, CA, USA), according to manufacturer’s recom-
mendation. Bacterial DNA was amplified using a primer
with GC clamp (341F-GC: 5'-CGC CCG CCG CGC
GCG GCG GGC GGG GCG GGG GCA CGG GGG
GCC TAC GGG AGG CAG CAG-3') and 907R (5'-CCG
TCA ATT CGT TTG AGT TT-3') [16,44]. The reaction
mixture contained 3 μL of DNA (approximately ~50-100
ng) and 0.5 μM of each primer, 35 μL of GoTaq Green
Master Mix reactions (Promega, Madison, WI, USA)
and water added to a final volume of 70 μL. PCR ampli-
fication was performed in a thermal cycler (PxE Thermal
Cycler, Thermo Hybaid, IL, USA), as follows: 95°C for 5
min; 20 cycles at 94°C for 30 s; 65°C for 1 min; 72°C for
3 min; 15 cycles at 94°C for 30 s; 55°C for 1 min; 72°C
for 3 min; and 72°C for 7 min. The negative PCR control
had no template in the reaction. The positive control for
PCR was prepared by adding 1 μL of Alcaligenes faecalis
DNA (100 ng). The PCR products were visualized
by running the reaction mixture in a TBE agarose gel
(1.0%), staining with ethidium bromide (0.2 μg/ml), and
observing under UV light.

Denaturing gradient gel electrophoresis (DGGE)
DGGE analysis of the bacterial amplicons (70 μL - entire
volume of a PCR reaction) was performed in 6% polyacryl-
amide (37.5: 1 acrylamide/bis-acrylamide) gels containing a
0–100% urea plus formamide gradient (100% denaturing
solution containing 7 M urea and 40% (v/v) formamide).
Electrophoresis was performed in 0.5 X TAE (TRIS

acetate 20 mM [pH 7.41], sodium acetate 10mM, and
sodium EDTA 0.5 mM) at 60 volts and 60°C for 14 h
using a DGGE 1001–110 System (C.B.S. Scientific Com-
pany, Inc). Gels were stained with ethidium bromide
(0.2 μg/mL) for 20 min and visualized using a FOTO/
Analyst Investigator/FX Systems (Fotodyne Incorpo-
rated, Hartland, WI, USA) [12].

16S RNA gene sequence analysis
Separated DNA fragments were excised from the DGGE
gels, placed in a freezer at −80°C for 2 h, and blended in
Mini-Beadbeater 8 (BioCold Scientific, Fenton, MO,
USA), for 3 min with 0.2 g sterile zirconia/silica beads
(BioSpec Products, Bartlesville, OK) in 500 μL sterile
HPLC water (Fisher HealthCare). Samples were stored
at 4°C overnight, after which 3 μl aliquots were used as
template for PCR amplification of 16S RNA gene,
employing primers 341F (same as 341F-GC but without
GC clamp) and 907R and the same PCR conditions as
described above, with a final PCR volume of 50 μL.
Re-amplified PCR products were purified using a Wizard

SV gel and PCR clean-up system kit (Promega, Madison,
WI, USA). Sequencing of one DNA strand was performed
using the BigDyeTM Terminator v3.1 sequencing kit, follow-
ing manufacturer’s instructions (Applied Biosystems, Foster
City, CA). Sequencing reactions were analyzed in a 3100
ABI DNA sequencer and sequence quality was determined
using Chromas Lite software (http://www.technelysium.
com.au/chromas_lite.html) [12].
The closest known relatives of the partial 16S RNA

gene sequences were identified using BLASTN 2.2.1
(http://www.ncbi.nlm.nih.gov/blast/) [45].

Phylogenetic analysis
Partial 16S rRNA gene sequences initially were com-
pared with sequences in the GenBank database using
BLASTN [45] to determine their approximate phylo-
genetic affiliation. Environmental sequences, together
with closest GenBank matches, were aligned in http://
greengenes.lbl.gov using the NAST Alignment utility
[46]. Sequences obtained from 23 DGGE bands were
aligned using NAST Alignment [46], and a phylogenetic
tree was constructed using 200 bp long aligned
sequences and the neighbor-joining algorithm (Jukes-
Cantor Model) in Molecular Evolutionary Genetics Ana-
lysis 2.1 software (MEGA, version 4) [47]. Bootstrapping
was used to estimate reliability of the phylogenetic recon-
structions (1000 replicates). Representative sequences
were submitted to GenBank database and are designated
by accession numbers HM466893-HM466915.

http://www.technelysium.com.au/chromas_lite.html
http://www.technelysium.com.au/chromas_lite.html
http://www.ncbi.nlm.nih.gov/blast/
http://greengenes.lbl.gov
http://greengenes.lbl.gov
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